ROLE OF AUDIO-VISUAL AIDS IN CONSTRUCTIVIST APPROACH

Rajesh Lankapalli
Ph.D in English Language Education
English and Foreign Languages University, Hyderabad
Email: bobbylrajesh@gmail.com

INTRODUCTION:

A constructivist approach to learning and instruction has been proposed as an alternative to the objectivist model, which is implicit in all behaviorist and some cognitive approaches to education. Objectivism sees knowledge as a passive reflection of the external, objective reality. This implies a process of "instruction," ensuring that the learner gets correct information. Technology integration has developed drastically over the last three decades. Instructional technology was meant for two uses in schools: learning about Computers and using them to create basic skills. As this was being developed in schools, it turned more into computer literacy, where students learned many different things about the computer, including: terminology, programming, ethical and social uses of computing and much more. In order to implement this technology, the teachers and staff to be trained in the technology first, in order for their students to learn. Applying the constructivist theory with technology integration can allow students to work to their fullest potential.

The term constructivism refers to the idea that learners construct knowledge for themselves. Each learner individually (and socially) constructs meaning as he or she learns. Constructing meaning is learning; there is no other kind. The dramatic consequences of this view are twofold:

1) Focus on the learner in thinking about learning (not on the subject/lesson to be taught).
2) There is no knowledge independent of the meaning attributed to experience (constructed) by the learner, or community of learners.

If we accept constructivist theory (which means we are willing to follow in the path of Dewey, Piaget and Vigotsky among others), then we have to give up Platonic and all subsequent realistic views of epistemology. We have to recognize that there is no such thing as knowledge "out there" independent of the knower, but only knowledge we construct for ourselves as we learn. Learning is not understanding the "true" nature of things, nor is it (as Plato suggested) remembering dimly perceived perfect ideas, but rather a personal and social construction of meaning out of the bewildering array of sensations which have no order or structure besides the explanations (and I stress the plural) which we fabricate for them.

The more important question is, does it actually make any difference in our everyday work whether deep down we consider knowledge to be about some "real" world independent of us, or whether we consider knowledge to be of our own making? The answer is yes, it does make a difference, because of the first point I suggested above: in our profession our epistemological views dictate our pedagogic views.

If we believe that knowledge consists of learning about the real world out there, then we endeavor first and foremost to understand that world, organize it in the most rational way possible, and, as teachers, present it to the learner. This view may still engage us in providing the learner with activities, with hands-on learning, with opportunities to experiment and manipulate the objects of the world, but the intention is always to make clear to the learner the structure of
the world independent of the learner. We help the learner understand the world, but we don't ask him to construct his or her own world. The great triumph of Western intellectual history from the Enlightenment until the beginning of the 20th century rested on its ability to organize the knowledge of the world in a rational way independent of the learner, determined by some structure of the subject. Disciplines were developed, taxonomic schemes established, and all these categories were viewed as components of a vast mechanical machine in which the parts could be explained in terms of their relationship to each other, and each part contributed to making the whole function smoothly. Nowhere in this description does the learner appear. The task of the teacher was to make clear to the learner the working of this machine and any accommodation to the learner was only to account for different appropriate entry points for different learners.

However, as I have indicated above, constructivist theory requires that we turn our attention by 180 degrees we must turn our back on any idea of an all encompassing machine which describes nature and instead look towards all those wonderful, individual living beings. The learners each of whom creates his or her own model to explain nature. If we accept the constructivist position we are inevitably required to follow a pedagogy which argues that we must provide learners with the opportunity to: a) interact with sensory data, and b) construct their own world.

DEFINITION & MEANING:
Teaching philosophy on the concept that learning (cognition) is the result of ‘mental construction’ students constructs their own understanding by reflecting on their personal experiences, and by relating the new knowledge with what they already know. Each student creates his or her own ‘schemas’ or mental-models to make sense of the world, and accommodates the new knowledge (learns) by adjusting them. One of its main principles is that learning is search for meaning therefore to be effective or teacher must help the students to discovering his or her own meaning. Constructivism in education theory built around the idea that a person, especially as a child learns new material by constructing his or her idea of the world and then adds to or alters this view in order to continue to learn.

Constructivism is an epistemology, or a theory, used to explain how people know what they know. The basic idea is that problem solving is at the heart of learning, thinking, and development. As people solve problems and discover the consequences of their actions - through reflecting on past and immediate experiences - they construct their own understanding. Learning is thus an active process that requires a change in the learner. This is achieved through the activities the learner engages in, including the consequences of those activities, and through reflection. People only deeply understand what they have constructed.

NEED OF CONSTRUCTIVISM:
Students are not blank slates upon which knowledge is etched. They come to learning situations with already formulated knowledge, ideas, and understandings. This previous knowledge is the raw material for the new knowledge they will create. One of the first things a teacher must do when considering how to teach students is to acknowledge that each student does not learn in the same way. This means that if the teacher chooses just one style of teaching (direct instruction, collaborative learning, inquiry leaning etc.) the students will not be maximizing their learning potential obviously, a teacher cannot reach every student on the same level during one lesson, but implementing a variety of learning styles throughout the course allows all the students will have the chance to learn in at least one way that matches their
learning style. Much of the material used to educate students at graduate level beyond primary school is largely text and lecture based which have significant limitations. While reading is a very important learning mode, not all students learn effectively from reading. Some students respond better to visual and audio stimuli of lecture but often get lost in the material or lose interest in the presentation. In this type of a learning environment, students have limited opportunity to ask questions or may be uncomfortable asking a question in front of the class. It is well known that many questions go unasked.

Since teacher cannot pour the information directly into a students’ brain, so all the sensory inputs should be active. For example I can give my own example, if think of a time when we were taught lessons in lecture type the level is learning is contrast against the time when I happened to teach. It is because I have properly learned the materials or concepts better when I prepare to teach. This is because I have constructed knowledge for myself. Below is the list of different methods of leaning. The percentages listed represent the average amount of information that is retained through that particular leaning method.

Lecture = 5%
Reading = 10%
Audio-visual = 20%
Demonstration = 30%
Discussion group = 50%
Practice by doing = 75%
Teach others/immediate use of knowledge = 90%

Children learn more, and enjoy learning more when they are actively involved, rather than passive listeners. Education works best when it concentrates on thinking and understanding, rather than on rote memorization. Constructivism concentrates on learning how to think and understand. Constructivist learning is transferable. In constructivist classrooms, students create organizing principles that they can take with them to other learning settings.

Constructivism gives students ownership of what they learn, since learning is based on students’ questions and explorations, and often the students have a hand in designing the assessments as well. Constructivist assessment engages the students’ initiatives and personal investments in their journals, research reports, physical models, and artistic representations. Engaging the creative instincts develops students’ abilities to express knowledge through a variety of ways. The students are also more likely to retain and transfer the new knowledge to real life.

By grounding learning activities in an authentic, real-world context, constructivism stimulates and engages students. Students in constructivist classrooms learn to question things and to apply their natural curiosity to the world. Constructivism promotes social and communication skills by creating a classroom environment that emphasizes collaboration and exchange of ideas. Students must learn how to articulate their ideas clearly as well as to collaborate on tasks effectively by sharing in group projects. Students must therefore exchange ideas and so must learn to "negotiate" with others and to evaluate their contributions in a socially acceptable manner. This is essential to success in the real world, since they will always be exposed to a variety of experiences in which they will have to cooperate and navigate among the ideas of others.

In contemporary social conditions, schools can’t be limited to promoting academic knowledge, but curriculum should be extended for the social awareness and for eradication of the social problems.
HISTORY AND ITS PROGRESS OVER TIME:

“As long as there were people asking each other questions, we have had constructivist classrooms. Constructivism, the study of learning, is about how we all make sense of our world, and that really hasn’t changed.”

Jacqueline Grennan Brooks (1999)

Although based on cognitive psychology research, its history goes back to the ancient Greece, the Socratic Method. The concept of constructivism has roots in classical antiquity, going back to Socrates's dialogues with his followers, in which he asked directed questions that led his students to realize for themselves the weaknesses in their thinking. The Socratic dialogue is still an important tool in the way constructivist educators assess their students' learning and plan new learning experiences.

In the same century, Jean Piaget and John Dewey developed theories of childhood development and education, what we now call Progressive Education, that led to the evolution of constructivism.

The psychological roots of constructivism began with the developmental work of Jean Piaget (1896 - 1980), who developed a theory (the theory of genetic epistemology) that analogized the development of the mind to evolutionary biological development and highlighted the adaptive function of cognition. Piaget proposed four stages in human development: the sensorimotor stage, the preoperational stage, the concrete operational stage, and the formal operational stage. For Piaget, the development of human intellect proceeds through adaptation and organization. Adaptation is a process of assimilation and accommodation, where external events are assimilated into existing understanding, but unfamiliar events, which don't fit with existing knowledge, are accommodated into the mind, thereby changing its organization. Piaget believed that humans learn through the construction of one logical structure after another. He also concluded that the logic of children and their modes of thinking are initially entirely different from those of adults. The implications of this theory and how he applied them have shaped the foundation for constructivist education. Countless studies have demonstrated - or tried to discredit - Piaget's developmental stages. For example, it has become clear that most adults use formal operations in only a few domains where they have expertise. Nonetheless, Piaget's hypothesis that learning is a transformative rather than a cumulative process is still central. Children do not learn a bit at a time about some issue until it finally comes together as understanding. Instead, they make sense of whatever they know from the very beginning. This understanding is progressively reformed as new knowledge is acquired, especially new knowledge that is incompatible with their previous understanding. This transformative view of learning has been greatly extended by neo-Piagetian research.

For the American philosopher and educator John Dewey (1859 - 1952), education depended on action - knowledge and ideas emerge only from a situation in which learners have to draw out experiences that have meaning and importance to them. Dewey argued that human thought is practical problem solving, which proceeds by testing rival hypotheses. These problem-solving experiences occur in a social context, such as a classroom, where students join together in manipulating materials and observing outcomes. Dewey invented the method of progressive education in North America. Dewey called for education to be grounded in real experience. He wrote, "If you have doubts about how learning happens, engage in sustained inquiry: study, ponder, consider alternative possibilities and arrive at your belief grounded in evidence." Inquiry is a key part of constructivist learning.
Among the educators, philosophers, psychologists, and sociologists who have added new perspectives to constructivist learning theory and practice are Lev Vygotsky, Jerome Bruner, and David Ausubel.

The Russian psychologist Lev Vygotsky's (1896 - 1934) relevance to constructivism derives from his theories about language, thought, and their mediation by society. Vygotsky held the position that the child gradually internalizes external and social activities, including communication, with more competent others. Although social speech is internalized in adulthood (it becomes thinking), Vygotsky contended that it still preserves its intrinsic collaborative character. Vygotsky introduced the social aspect of learning into constructivism. He defined the "zone of proximal learning," according to which students solve problems beyond their actual developmental level (but within their level of potential development) under adult guidance or in collaboration with more capable peers. In his experiments, Vygotsky studied the difference between the child's reasoning when working independently versus reasoning when working with a more competent person. He devised the notion of the zone of proximal development to reflect on the potential of this difference. Vygotsky's findings suggested that learning environments should involve guided interactions that permit children to reflect on inconsistency and to change their conceptions through communication. Vygotsky's work has since been extended in the situated approach to learning.

Bruner initiated curriculum change based on the notion that learning is an active, social process in which students construct new ideas or concepts based on their current knowledge.

Seymour Papert's groundbreaking work in using computers to teach children has led to the widespread use of computer and information technology in constructivist environments.

Modern educators who have studied, written about, and practiced constructivist approaches to education include John D. Bransford, Ernst von Glasersfeld, Eleanor Duckworth, George Forman, Roger Schank, Jacqueline Grennon Brooks, and Martin G. Brooks.

In summary, Piaget contributed the idea of transformation in learning and development; Vygotsky contributed the idea that learning and development were integrally tied to communicative interactions with others; and Dewey contributed the idea that schools had to bring real world problems into the school curriculum.

HOW DOES THIS THEORY DIFFER FROM TRADITIONAL IDEAS ABOUT TEACHING AND LEARNING?

As with many of the methods addressed in this series of workshops, in the constructivist classroom, the focus tends to shift from the teacher to the students. The classroom is no longer a place where the teacher ("expert") pours knowledge into passive students, who wait like empty vessels to be filled. In the constructivist model, the students are urged to be actively involved in their own process of learning. The teacher functions more as a facilitator who coaches, mediates, prompts, and helps students develop and assess their understanding, and thereby their learning. One of the teacher's biggest jobs becomes 'asking good questions'.

And, in the constructivist classroom, both teacher and students think of knowledge not as inert factoids to be memorized, but as a dynamic, ever-changing view of the world we live in and the ability to successfully stretch and explore that view.

The chart below compares the traditional classroom to the constructivist one. We can see significant differences in basic assumptions about knowledge, students, and learning. (It's important, however, to bear in mind that constructivists acknowledge that students are
constructing knowledge in traditional classrooms, too. It's really a matter of the emphasis being on the student, not on the instructor.)

<table>
<thead>
<tr>
<th>Traditional classroom</th>
<th>Constructivist classroom</th>
</tr>
</thead>
<tbody>
<tr>
<td>Curriculum begins with the parts of the whole.</td>
<td>Curriculum emphasizes big concepts, beginning with the whole and expanding to include the parts.</td>
</tr>
<tr>
<td>Emphasizes basic skills.</td>
<td></td>
</tr>
<tr>
<td>Strict adherence to fixed curriculum is highly valued.</td>
<td>Pursuit of student questions and interests is valued.</td>
</tr>
<tr>
<td>Materials are primarily textbooks and workbooks.</td>
<td>Materials include primary sources of material and manipulative materials.</td>
</tr>
<tr>
<td>Learning is based on repetition.</td>
<td>Learning is interactive, building on what the student already knows.</td>
</tr>
<tr>
<td>Teachers disseminate information to students; students are recipients of knowledge.</td>
<td>Teachers have a dialogue with students, helping students construct their own knowledge.</td>
</tr>
<tr>
<td>Teacher's role is directive, rooted in authority.</td>
<td>Teacher's role is interactive, rooted in negotiation.</td>
</tr>
<tr>
<td>Assessment is through testing, correct answers.</td>
<td>Assessment includes student works, observations, and points of view, as well as tests. Process is as important as product.</td>
</tr>
<tr>
<td>Knowledge is seen as inert.</td>
<td>Knowledge is seen as dynamic, ever changing with our experiences.</td>
</tr>
<tr>
<td>Students work primarily alone.</td>
<td>Students work primarily in groups.</td>
</tr>
</tbody>
</table>

HOW DO I APPLY CONSTRUCTIVISM IN MY CLASSROOM?

Constructivist Processes and Education

There are number of competing constructivist views in education. Constructivists tend to celebrate complexity and multiple perspectives, though they do share at least a few educational prescriptions.

Prior knowledge: Constructivists believe that prior knowledge impacts the learning process. In trying to solve novel problems, perceptual or conceptual similarities between existing knowledge and a new problem can remind people of what they already know. This is often one's first approach towards solving novel problems. Information not connected with a learner's prior experiences will be quickly forgotten. In short, the learner must actively construct new information into his or her existing mental framework for meaningful learning to occur.

Studies of adult scientific thinking reveal that many adults hold non-normative scientific explanations, even though they have studied science. This is what the philosopher Alfred Whitehead (1861 - 1947) referred to as *inert knowledge*. Asking students what they already know about a topic and what puzzles them affords an opportunity to assess children's prior knowledge and the processes by which they will make sense of phenomena.

Real and authentic problems: Constructivist learning is based on the active participation of learners in problem-solving and critical thinking - given real and authentic problems. In *anchored instruction*, for example, as advanced in the work of the Cognition and Technology Group at IIIT Nuzvid, learners are invited to engage in a fictitious problem occurring in a simulated real-world environment. Rich and realistic video contexts are provided - not only to
provide relevant information for solving the problem, but also to create a realistic context. If the students buy in to the proposed problems, they will be engaged in problem solving similar to what the people in the video are engaged in.

Constructivist curriculum. A constructively oriented curriculum presents an emerging agenda based on what children know, what they are puzzled by, and the teachers' learning goals. Thus, an important part of a constructivist-oriented curriculum should be the negotiation of meaning. An English teacher, guides students to make sense of vocabulary by comparing and resolving discrepancies between what they know and what seems to be implied by new experience.

In constructivist classrooms, curriculum is generally a process of digging deeper and deeper into big ideas, rather than presenting a breadth of coverage. For example, in the Fostering Communities of Learners project where students learn how to learn, in knowledge-building classrooms where students seek to create new knowledge, or in Howard Gardner's classrooms where the focus is on learning for deep understanding, students might study endangered species, island biogeography, or the principles of gravity over several months. As students pursue questions, they derive new and more complex questions to be investigated. Building useful knowledge structures requires effortful and purposeful activity over an extended period.

Cognitive conflict and social context. According to Dewey, "Reflection arises because of the appearance of incompatible factors within an empirical situation. Then opposed responses are provoked which cannot be taken simultaneously in overt action". To say this in another way, cognitive conflict or puzzlement is the stimulus for learning, and it determines the organization and nature of what is being learned. Negotiation can also occur between individuals in a classroom. This process involves discussion and attentive listening, making sense of the points of views of others, and comparing personal meanings to the theories of peers. Justifying one position over another and selecting theories that are more viable leads to a better theory. Katerine Bielaczyc and Allan Collins have summarized educational research on learning communities in classrooms where the class goal is to learn together, to appreciate and capitalize on distributed expertise, and to articulate the kinds of cognitive processes needed for learning.

Constructivist assessment. Assessment of student learning is of two types: formative and summative. Formative assessment occurs during learning and provides feedback to the student. It includes evaluations of ongoing portfolios, and demonstrations of work in progress. Student collaboration also provides a form of formative assessment. Summative assessment occurs through tests and essays at the end of a unit of study. Summative assessments provide little specific feedback. From a constructivist perspective, formative assessments are more valuable to the learner, but with the recent emphasis in North America on standards, and due to the poor alignment of constructivist approaches and standards, it is very difficult to harmonize formative and summative assessments.

Technology and constructivism. Cognitive research has uncovered successful patterns in tutorial, mentoring, and group discussion interactions. However, typical Internet chat and bulletin-board systems do not support a constructivist approach to learning and instruction. During the 1990s, researchers created tools such as Knowledge Forum, the Knowledge Integration Environment are more fully address constructivist principles. Each of these tools invites collaboration by structuring the kinds of contributions learners can make, supporting meaningful relationships among those contributions, and guiding students' inquiries. Teachers who use information and communication technologies in their classrooms are more likely to have a constructivist perspective towards learning and instruction. Additionally, sophisticated information and technology communications tools can capture the cognitive processes learners
engage in when solving problems. This affords teacher reflection and coaching to aid deeper learning. It also affords teachers the chance to learn from each other.

The teacher's role. The teacher's role in a constructivist classroom isn't so much to lecture at students but to act as an expert learner who can guide students into adopting cognitive strategies such as self testing, articulating understanding, asking probing questions, and reflection. The role of the teacher in constructivist classrooms is to organize information around big ideas that engage the students' interest, to assist students in developing new insights, and to connect them with their previous learning. The activities are student-centered, and students are encouraged to ask their own questions, carry out their own experiments, make their own analogies, and come to their own conclusions. Becoming a constructivist teacher may prove a difficult transformation, however, since most instructors have been prepared for teaching in the traditional, objectivist manner. It "requires a paradigm shift," as well as "the willing abandonment of familiar perspectives and practices and the adoption of new ones".

A constructivist approach to education is widely accepted by most researchers, though not by all. Carl Bereiter argues that constructivism in schools is usually reduced to project based learning, and John Anderson, Lynn Reder, and Herbert Simon claim that constructivism advocates very inefficient learning and assessment procedures. In any event, the reality is that constructivism is rarely practiced in schools.

As there are a number of ways and styles in which the constructivist approach can be applied in the classroom. However, Jacqueline Grennon Brooks and Martin G. Brooks set forth some guiding principles in their book 'in search of understanding: the case for constructivist classrooms.' They are:

Pose problems that are or will be relevant to the students:
In many cases, the problem you pose is or will be relevant to the students, and they will approach it sensing its relevance to their lives. Relevance can emerge through teacher mediation. Teachers can add elements to the learning situation that make the activity relevant to the students.

Structure learning around essential concepts:
Encourage students to make meaning by breaking wholes into parts. Avoid starting with the parts to build a "whole."
For example, young storywriters can approach the concept of "telling a story" through discovery activities. These can include a class library of illustrated storybooks, a visit by a storyteller, and some Web activities sponsored by a book publisher. The teacher prepares the students for writing their own stories, and introduces the idea of sequencing through visuals. Students can rearrange parts of a known story or even digitized video material. This last activity might allow the students to reconstruct the order in which a visiting storyteller told her story.

We can define or find "essential concepts" in different ways. We might refer to the list of standard professional group publishes. Or, we can organize your constructivist work by exploring significant historical events or seminal works (e.g., a Mozart opera) from multiple perspectives.

Be aware that students' points of view are windows into their reasoning:
The challenging of ideas and the seeking of elaboration threatens many students. Students in the traditional classroom who cannot guess what the teacher has in mind for the right answer quickly drop out of class discussion. They must be "gentled" into the constructivist learning environment through open-ended, non-judgmental questioning.
Students also need to have an opportunity to elaborate and explain. Sometimes, how you feel about something or what you think is not as important as why. Using evidence/proof to present your opinion is most important! The construction of knowledge calls for not only time to reflect but also for time and practice in explaining.

Adapt curriculum to address students’ suppositions and development:

Presenting developmentally appropriate work is a place to start. Most high-school students would find the preparation of a film script or a legal brief more engaging and relevant than the report format they mastered in sixth grade. Role plays are also interesting ways for students to present information. As students engage in the work, the teacher must monitor their perceptions and ways of learning.

Assess student learning in the context of teaching:

Shift from measuring how well or poorly a student performs to assessing how much and what kind of help a student needs to be successful.

ROLE OF AUDIO-VISUAL AIDS IN CONSTRUCTIVIST CLASSROOM SETTING:

Constructivism as a theory of learning has existed for over one hundred years but has not been widely accepted or applied in actual or real schools teaching. Modern technology is significantly impacting society and our daily lives. Schools have and will continue to reflect societal change in its education system. So there is a strong link between effective use of modern technology and the theory of constructivism and this link is so strong that it will cause a fundamental shift away from didactic techniques to a unifying constructivist framework.

From the beginning technology has always impacted education; the printing press allowed text books to be developed, and the replacement of slates and chalk with pencil and pen, and paper permitted a permanent record of one’s writing to be preserved. In the late 1950s and 1960s itself television was utilized as a means of teaching large groups of students. In recent days a new wave of technology is beginning to cause repercussions in schools that will forever change how students are taught.

Many theories of learning have been proposed in the last century. Until recently, behavior psychology has influenced education. However the constructivist theory of learning has again came to the forefront. It’s a theory where learning is juxtaposed to behavioral theory, because constructivism focuses on knowledge construction, not on knowledge reproduction. Technology has allowed students to provide greater assistance to traditionally underserved populations. Research has also shown that computer mediated communication can ease the social isolation that may be experienced by those with the students who are not fortunate to learn the language from their childhood. Computers have proved successful in increasing academic motivation and lessoning anxiety among low ability student and learning disabled students. And it increased the maximum level of learning at all levels of learners when compared to the traditional and non-technology classrooms.

Students in technology supported classrooms are armed with powerful tools to help them to gather information, consult with their colleagues and present their finding. Their autonomy and confidence increase simultaneously as they rely less on their teacher and more on their own initiative and innovation for knowledge creation.

To understand better how technology might assist in implementing constructivist strategies I will make up an example classroom experience. This experience will center around a course in English composition. The purpose of one unit of the course is to learn to compose short stories. I will play the role of the teacher (even though I know little about composition) and I will attempt to use technology along with constructivist strategies.
First of all, I will provide the students some basic ideas about the composition of short stories and I will provide them with several examples. I will allow the students to go through the examples and reference materials for a short time. Then I will ask each student to develop their own idea about what, when, and how they will compose their own short stories. One of the requirements that I have is that each student will work in a collaborative group. This does not mean that they will all be going through the same process. It does mean that they will share their own particular process, findings, and their developing short story with their group members. However, students will not meet in groups face-to-face; they will perform all of their group work via e-mail.

Each student will have an e-mail account and a computer (we have a school with many resources) which they will use to communicate with the other students and with any outside individuals they may choose. Students are required read and respond to each e-mail message they receive. When draft versions of the short stories are available, each student in the group will be required to send that draft via e-mail to each of their group members for review and comments. Eventually, all of the final versions of the stories will be sent out in an electronic journal via e-mail to all of the students in the school. As a teacher, I will act as a coach and mentor during the process.

CONCLUSION:
All in all the constructivism theory does support the integration of technology when done with the correct approach in mind. Constructivism as theory will be forced in to play by emerging technologies because it is impossible for a teacher to use didactic methodology in a digital classroom. This approach is to maintain a constructivist classroom by supporting higher order thinking skills and by making any learning connectable to the real life situation of the given students. The integration of technology is now becoming a necessity for all of those in the work force, including education. Our purpose as educators is to prepare our students to be active participants in the working community. Technology is now an intricate part of the community. The key to making this integration successful is that, educators or teachers they themselves learn how to integrate the technology in their lessons and all should teach with the commitment to increase the level of learning maximum in their students.

BIBLIOGRAPHY:
